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Abstract. The fluctuation-induced magnetoconductivity of the Bi2Sr2Ca2Cu3O10+x phase is studied above
zero-field critical temperature Tc(0) and for moderate magnetic fields. It is found that the Gaussian ap-
proximation for superconducting fluctuations underestimates the negative fluctuation magnetoconductance
drastically in the Tc(0) < T < Tc(0) + 20 K temperature range. Taking into account the critical fluc-
tuation contribution on the base of self-consistent Hartree approximation makes it possible to explain the
data quantitatively in terms of the only Aslamazov-Larkin contribution for different magnetic fields and
temperatures, consistently with the zero field data.

PACS. 74.25.Fy Transport properties (electric and thermal conductivity, thermoelectric effects, etc.)
– 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) –
74.72.Hs Bi-based cuprates – 74.76.Bz High-Tc films

A wide region of fluctuation-induced behavior, extended
well above the zero-field transition temperature, is one
of the most interesting features of the high-temperature
superconductors (HTS). The unit volume of fluctuation
is determined by coherence lengths, very short in the
case of cuprates. At the same time, each fluctuation
mode is associated with a thermal energy of ∼ kBT ,
much larger than in the case of conventional superconduc-
tors, which results in the enhanced density of fluctuation-
induced free energy. Additionally, the layered structure
of conducting Cu-O planes reduces the effective dimen-
sionality of system with a further enhance of fluctua-
tion compared to the three-dimensional case. The fluc-
tuation effects were found to be responsible for numerous
anomalies in the normal-state properties of HTS, includ-
ing the enhancement of out-of-plane conductivity at the
edge of transition, the negative magnetoresistance along
c-axis, the pseudogap-like anomalies in far-infrared con-
ductivity, the non-Korringa behavior of NMR rate and
others (for a comprehensive review see [1]). Usually, the
interpretation of experimental data in terms of fluctu-
ation theory requires the extrapolation of the normal-
state property from high temperatures (at least T ∼
2Tc(0)), where fluctuation effects are supposed to be neg-
ligible. As most of the normal-state properties of HTS are
temperature-dependent, this procedure is somewhat arbi-
trary. Moreover, recent studies demonstrated that fluc-
tuation effects in HTS may persist up to quite high
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temperatures [2,3] and extrapolation of normal-state
property becomes doubtful. The above-mentioned prob-
lem may be resolved by studying a property such as
fluctuation magnetoconductivity (MC), where the field-
independent normal-state contribution is canceled. Fluc-
tuation MC of different HTS families has been exten-
sively studied before and the general agreement with the
full theory of fluctuation conductivity in the presence of
magnetic field perpendicular to layers [4] has been found.
At the same time, some authors [5,6] have mentioned
that the predictions of fluctuation theory often under-
estimate the magnitude of negative fluctuation-induced
MC in the intermediate field range, even in the order
of magnitude, when temperature is about 10 K above
Tc(0). To improve the agreement the authors used addi-
tional corrections, like the Maki-Thompson, the Zeeman
terms and the normal-state MC, or took into account the
non-uniform critical temperature distribution inside the
sample [2,5,6]. Considering these additional contributions
leads to the increase of the number of free fitting param-
eters and, therefore, to the less reliable results of such
analysis. It is interesting that, to fit the zero-field excess
conductivity by the fluctuation theory, no additional con-
tributions are required and the only Aslamazov-Larkin
(AL) term (paraconductivity) provides a very good fit
to the data in all cases [3]. The deviation of the fluc-
tuation MC data from the Gaussian theory predictions
[4,7,8] could result from approaching the region of crit-
ical fluctuations, where correction terms of higher order
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in the superconducting order parameter, ψ, are not
negligible in the Ginzburg-Landau free energy. In the
Gaussian approximation, which theory [4] is based on,
fluctuations are considered to be independent and only the
|ψ|2 terms are included. Hence, the Gaussian fluctuation
theory works well for temperatures high enough in com-
parison with Tc(0) where fluctuations are small in magni-
tude. Therefore, it is quite natural to observe a deviation
of experimentally measured fluctuation conductivity from
the Gaussian theory as T approaches Tc(0). The width of
critical region in the absence of magnetic field is deter-
mined by the so-called Ginzburg number, Gi, which, for
the quasi-two-dimensional case may be expressed through
the specific-heat jump, ∆C, as Gi = kB/(∆C ξ2

||(0) s). As-
suming the value coming from Ginzburg-Landau theory:
∆C = 0.35(pFm/~3)Tck

2
B, one gets that Gi is roughly

the ratio between the critical temperature and the Fermi
energy, kTc(0)/EF. For quasi-two-dimensional Bi- and
Tl-based compounds Gi can reach 0.05, and, therefore,
the region of reduced temperatures ε = (T − Tc(0))/Tc(0)
where Gaussian approximation may be used, is 0.05 �
ε � 1, which means that T should be at least 15÷ 20 K
above Tc(0). A magnetic field B applied perpendicular
to layers further increases the critical region because its
width becomes proportional to

√
B. Ikeda, Ohmi and

Tsuneto [9] calculated the fluctuation conductivity in
Lawrence-Doniach model but they included the |ψ|4 term
in the Ginzburg-Landau free energy. Later on, the simi-
lar problem was considered by Ullah and Dorsey [10] who
included a |ψ|4 term within the self-consistent Hartree ap-
proximation and obtained fluctuation-induced corrections
to the transport coefficients, including electrical conduc-
tivity, in magnetic field. The scaling relations for fluctua-
tions MC in the lowest Landau level approximation, cal-
culated in reference [10], were found to be consistent with
experimental data on YBa2Cu3Ox and Tl2Ba2CaCu2Ox

in reference [11]. Recently, it was shown that both in-
plane and out-of-plane components of magnetoconductiv-
ity tensor of Bi2Sr2CaCu2Ox films are well described in
terms of the fluctuation theory within the Hartree ap-
proximation in a wide range of temperatures below Tc(0)
[12]. In the present paper we study the fluctuation MC in
Bi2Sr2Ca2Cu3Ox above Tc(0). The AL contribution to in-
plane electrical conductivity in the presence of transverse
magnetic field is given by [4]:

σAL
ab (B) = A

∞∑
n=0

n+ 1
[(εB + β(n+ 1))(εB + β(n+ 1) + r)]1/2

+
n+ 1

[(εB + βn)(εB + βn+ r)]1/2

− 2(n+ 1)
[(εB + β(n+ 1

2 ))(εB + β(n+ 1
2 ) + r)]1/2

(1)

where A = 370/s [Ohm cm]−1, s being the spacing be-
tween CuO2 planes measured in angstroms. r = 4ηJ2/v2

F
is the parameter characterizing dimensional crossover in
fluctuation behavior with r(Tc) = 4ξ2

⊥(0)/s2, ξ2
⊥(0) being

the zero-temperature Ginzburg-Landau coherence length
in the c-axis direction. J is the effective quasiparticle hop-
ping energy and vF being the Fermi velocity parallel to
layers, whereas η is the coefficient of the gradient term in
the 2D Ginzburg-Landau theory defined in reference [4]; β
is defined as 2B/[Tc|dHc2/dT |Tc ]. The temperature scale
is defined by the parameters ε = t− 1, t = T/Tc(0), εB =
ε + β/2. To modify this equation within the Hartree ap-
proximation, one has to renormalize εB according to self-
consistent equation [10]:

εB = ε̃B −
1
4
Gi2 t β

×
1/β∑
n=0

1
[(ε̃B + βn)(ε̃B + β(n+ 1) + r)]1/2

· (2)

The fluctuation conductivity in the Hartree approxima-
tion may be obtained now by replacing ε with ε̃ in
equation (1). The sample used in the experiment is a
Bi2Sr2Ca2Cu3O tape prepared by the powder in tube
method which is described elsewhere [13]. It is well known
that this compound has never been obtained as a single
crystal and this procedure provides filaments (10÷30 µm)
of strongly connected superconducting grains with ex-
cellent intrinsic properties. This is confirmed by X-ray
diffraction patterns which contain only the (00l) peaks of
the 2223 phase [14]; secondary phases, between them the
2212 phase, if present at all, must constitute less than 5%.
Moreover the filament is strongly textured with the c-axis
oriented perpendicular to the tape plane (rocking angle of
8◦). Concerning a possible nonuniform critical tempera-
ture, it is mainly due to a distribution of the Pb content
in the (2223) phase. On the other hand, in thermodynam-
ical samples the Pb content cannot be varied easily; in ref-
erence [14], only varying dramatically the reaction time,
the Pb content has been changed from 1.9 to 1.3 at%,
with a shift in the critical temperature less than 2 K.
Therefore, much narrower critical temperature distribu-
tion is expected in samples as our, grown in optimal condi-
tion. The resistivity measurements were performed, after
removing the silver sheathing chemically, by a standard
four probes technique using a Keithley 182 nVoltmeter;
the sensitivity of the measurements was 10 p.p.m. The
resistivity was measured each 0.1 K increasing the tem-
perature from 100 to 300 K; the magnetoresistivity mea-
surements were performed at a fixed magnetic field and
increasing the temperature from 100 to 200 K. Figure 1
shows the magnetoresistivity measurements from 105 to
130 K at magnetic fields of 0, 0.04, 2, 4, 8 T. The good
quality of the sample is emphasized by the low resistivity
values, of the same order of magnitude as those measured
in HTS single crystals. In zero field the zero resistivity
state is reached at 108.6 K and above this temperature
the transition is rounded by fluctuations and by some crit-
ical temperature distribution: we define Tc and ∆Tc as the
maximum and the half width at half-height of the dρdT
versus T curve. We find Tc = 109.3 K and ∆Tc = 0.4 K:
such a critical temperature nonuniformity limits our anal-
ysis at reduced temperature larger than∆Tc/Tc ∼ 0.0036.
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Fig. 1. Magnetoresistivity measurements from 105 to 130 K
at the magnetic fields of 0, 0.04, 2, 4, 8 T. In the inset the
excess conductivity at zero field σfl is shown as a function of
ε: the experimental data (circle) are compared with the quasi-
two-dimensional AL formula (continuous line).

In the inset of Figure 1 the zero-field excess conductivity
σfl = (ρn− ρ)/ρnρ is plotted as a function of ε. Here ρn is
the normal state resistivity linearly extrapolated at tem-
perature as high as T > 2Tc(0). Comparison of σfl with
quasi-two-dimensional AL formula is shown in the inset
of Figure 1 (continuous line). From the best fit Tc(0) has
been found to be 109.3 K, which corresponds exactly to
the maximum of dρ/dT , the anisotropy parameter r has
turned out to be 0.001, and the prefactor A is 92.5 Ω cm,
corresponding to s = 16.4 Å to be compared with an in-
terlayer distance of 18 Å. As expected, the parameter r is
smaller than what was found in the less anisotropic YBCO
compounds (0.01–0.1) [15]. Moreover, the good agrement
with the interlayer distance confirms that resistivity data
are not affected by extrinsic effects such as weak link dis-
sipation which causes a decrease of the measured σfl [15].
The finite-field data were then fitted to equations (1) and
(2) by keeping Tc(0), r and A fixed and β and Gi as free
parameters. For intermediate fields of 2, 4 and 8 T the
fit is generally good, providing field-independent Gi in
the range 0.08÷ 0.1. On the other hand, β was found to
vary linearly with the applied field, as expected; consis-
tently, it yields a slope of the upper critical field of about
1.5 T/K at Tc, to be compared with the thermodynamic
|dHc2/dT |Tc ≈ 2÷3 T/K obtained earlier from magnetiza-
tion data [16]. All these results are emphasized by Figure 2
where, as an example, ∆σ(B) = σ(B)−σ(0) versus ε is re-
ported for B = 8 T: the circles are the experimental data,
the continuous line is the fit from equations (1) and (2),
and the dotted line is the Gaussian approximation without
renormalization (Eq. (1)). β as a function of the applied
magnetic field is shown in the inset of Figure 2. As we
can see, the magnetoconductivity data are well described
by taking the critical fluctuation into account exactly in
the region (0.001 < ε < 0.1) where Gaussian approxi-
mation without renormalization underestimates the neg-
ative fluctuation magnetoconductivity. This discrepancy
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Fig. 2. Magnetoconductivity ∆σ(B) = σ(B)−σ(0) versus ε for
B = 8 T: the circles are the experimental data, the continuous
line is the fit from equations (1) and (2) and the dotted line is
the Gaussian approximation without renormalization (Eq. (1)
with β = 0.1 and r = 0.001). The β values obtained by the
best fit procedure are shown in the inset as a function of the
applied magnetic field.
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Fig. 3. Magnetoconductivity ∆σ(B) = σ(B) − σ(0) versus
ε for B = 0.04 T: the circles are the experimental data, the
continuous line is the fit from equations (1) and (2) and the
dotted line is the Gaussian approximation without renormal-
ization (Eq. (1) with β = 0.0005 and r = 0.001).

was pointed out in references [5,6], but was attributed
to the presence of additional contributions; on the other
hand in reference [17] the agreement with the Gaussian
approximation was proved at larger temperatures.

The disagreement between the Gaussian approxima-
tion and experimental data at small ε is even more
pronounced in a field as low as 0.04 T, where the
Gaussian contribution, being quadratic in the magnetic
field, is roughly two orders of magnitude less than the
experimentally measured fluctuation magnetoconductiv-
ity. The calculation according to the Hartree approxima-
tion with appropriate β = 0.0005 and Gi = 0.1 gives a
magnitude nearly twice as big as experimentally observed.
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The best fit to the 0.04 T data (shown in Fig. 3) is found
for β = 0.0005 and Gi = 0.03, the latter being three
times lower than the value found above for 2, 4 and 8 T.
We can say that for weak magnetic fields the renormal-
ized theory is only in qualitative agreement with the data.
For comparison, the result of calculation according to the
fluctuation theory within the Gaussian approximation is
shown in Figure 3 as a dotted line. One can observe that
the Gaussian approximation underestimates the magni-
tude of fluctuation magnetoconductivity by two orders of
magnitude when temperature approaches the transition,
while the renormalized theory is in good agreement with
data. Discussing the results obtained we want to point
out that the experimentally measured magnetoconductiv-
ity of Bi2Sr2Ca2Cu3Ox phase may be described quanti-
tatively (except for magnetic field as low as 0.04 T) in
terms of the Aslamazov-Larkin theory modified by the
Hartree renormalization for finite magnetic field and no
additional contributions are required in order to achieve
a good agreement between theory and experimental data.
As we already discussed, the magnetoresistivity measure-
ments provide a useful tool for studying fluctuation phe-
nomena because in this case the problem of extrapola-
tion of normal-state resistivity from high temperatures
does not appear. In our discussion we have not consid-
ered the negative magnetoconductivity due to the curva-
ture of the trajectories of normal-state quasiparticles. In
the relative vicinity of Tc, however, owing to the strong
singularity of fluctuation MC, the normal-state MC can
be omitted. Actually, the order of magnitude of fluctua-
tion MC is: ∆σfl/σn ∼ Gi(βε )2 1√

ε
∼ Gi 1

ε3/2 (ωc
T )2, where

ωc is the cyclotron frequency, while the classical normal-
state MC ∆σn/σn ∼ (ωcτ)2. One can easily define the
condition under which the normal-state MC can be ne-
glected: ε < Gi2/3

(Tτ)4/3 . If the Ginzburg number is of order
of 0.1 and Tτ is about unity this condition reads ε < 0.2,
i.e. in the very range we considered. At higher tempera-
tures the normal-state MC should be accounted together
with the fluctuation-induced MC. Naturally, if the mate-
rial is dirty enough and Tτ < 1 (as it is believed for the
Bi2Sr2Ca2Cu3Ox phase), the region of reduced tempera-
tures where the normal-state MC is negligible would be
wider according to the above relations.

To summarize, we have measured the fluctuation-
induced MC in Bi2Sr2Ca2Cu3Ox phase and we have
shown the quantitative agreement of our data with the
Aslamazov-Larkin theory of fluctuation magnetoconduc-
tivity with the Hartree renormalization.
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